热点链接
 
  当前位置:  
 
刘超
2021-02-24 11:00  

刘超  北京航空航天大学仪器科学与光电工程学院  副教授/博士生导师

研究方向:液体光子器件与成像技术

联系邮箱:chaoliu@buaa.edu.cn



工作经历

2021.01—至今   北京航空航天大学  仪器科学与光电工程学院  副教授

2018.11-2021.01  北京航空航天大学  仪器科学与光电工程学院  博士后

2016.08-2018.11  太原理工大学      物理与光电工程学院      讲师

教育经历

2011.09-2016.07  四川大学     电子信息学院        光学工程  博士研究生

2007.09-2011.07  山西大同大学 物理与电子科学学院  物理学    本科

获奖及荣誉

2018 太原理工大学青年教师教学竞赛  二等奖

2017 太原理工大学青年教师教学竞赛  二等奖

2014 博士研究生国家奖学金

教学和人才培养

曾讲授本科生课程“光学”、“大学物理实验”,已培养2名硕士研究生。现讲授 一般通识课程“液体光子器件”(全英文)

科研项目

[1]    国家自然科学基金面上项目“基于液体透镜的大视场连续光学变焦显微成像技术”(62175006),2022~2025  (项目负责人)

[2]    国家重点研发计划“彩色电子纸显示材料与器件” 2021YFB3600600),2022~2025   (子课题负责人)

[3]    北京市自然科学基金面上项目“自适应变焦显微成像研究” 4222069),2022~2024  (项目负责人)

[4]    北航青年拔尖人才支持计划项目“大视场连续光学变焦显微成像技术” YWF-21-BJ-J-1174),2021~2025  (项目负责人)

[5]    国家自然科学基金青年基金项目“基于石墨烯导电薄膜的电润湿液体变焦仿生复眼”(61805169),2019~2021  (项目负责人)

[6]    中国博士后科学基金站中特别资助项目“基于光流控透镜的连续光学变焦显微成像技术”(2020T130038),2020~2021  (项目负责人)

[7]    中国博士后科学基金面上项目“基于石墨烯电极的精准调焦全景视场液体仿生复眼研究”(2019M650421),2019~2020  (项目负责人)

科研成果

在液体光子器件与成像技术方面取得了重要成果:

[1]    揭示了微液滴驱动的低压快速响应机理,实现了液体透镜20V以内低压驱动;研制的5mm孔径液体透镜光焦度调节范围可达-20D~4Dm-1)。

[2]    研制了基于液体透镜的10×-60×连续光学变焦显微镜,实现了500nm的高分辨率成像,倍率切换时间约在100ms以内,可广泛应用于医学成像、医疗病例诊断和科学研究中。

[3]    研制了基于电润湿液体透镜的变焦相机,其具有高清成像(分辨率可达100lp/mm @MTF>0.3)和轻量化的优点(35mm× 15mm),可广泛用于军民两用监控系统和便携式拍摄系统中。

著作、论文与专利

合著专著1部,发表SCI论文60篇,授权中国发明专利31件,软件著作权登记2件。

1. 合著专著

[1]    王琼华,刘超,王迪,李磊. 《液体光光子器件》. 科学出版社. 2021.

2. 代表论文

[1]    Liu C#, Jiang Z#, Wang X, Zheng Y, Zheng Y W, and Wang Q H*, Continuous optical zoom microscope with extended depth of field and 3D reconstruction [J]. PhotoniX, 2022, 3:20.

[2]    Wang D#, Liu C#, Shen C, Xing Y, Wang Q H*. Holographic capture and projection system of real object based on tunable zoom lens [J]. PhotoniX, 2020, 1:6.

[3]    Liu C, Zheng Y, Li N N, Hou Y H, Jiang Z, and Wang Q H*, Real scene acquisition and holographic near-eye display system based on a zoom industrial endoscope [J]. Optics Express, 2022, 30(18): 33170-33181.

[4]    Liu C, Wang D, Wang G X, Jiang Z, Wang Q H*. 1550 nm infrared/visible light switchable liquid optical switch [J]. Optics Express, 2020, 28(6): 8974-8984.

[5]    Liu C, Wang D, Wang Q H*. Xing Y. Multifunctional optofluidic lens with beam steering [J]. Optics Express, 2020, 28(5): 7734-7745.

[6]    Liu C, Wang D, Wang Q H*, Fang J C*. Electrowetting-actuated multifunctional optofluidic lens to improve the quality of computer-generated holography[J]. Optics Express, 2019, 27(9):12963-12975.

[7]    Liu C, Wang D, Wang Q H*. Variable aperture with graded attenuation combined with adjustable focal length lens[J]. Optics Express, 2019, 27(10):14075-14084.

[8]    Liu C, Wang D, Wang Q H*. Holographic display system with adjustable viewing angle based on multi-focus optofluidic lens [J]. Optics Express, 2019, 27(13):18210-18221.

[9]    Liu C, Wang D, Li L, Wang Q H*. Multifunction reflector controlled by liquid piston for optical switch and beam steering [J]. Optics Express, 2019, 27(23): 33233-33242.

3. 其他论文

[10] Liu C, Li L, Wang Q H*. Liquid prism for beam tracking and steering[J]. Optical Engineering, 2012, 51(11):114002.

[11] Liu C, Li L, Wang Q H*. Bidirectional optical switch based on electrowetting[J]. Journal of Applied Physics, 2013, 113(19):193106.

[12] Liu C, Wang Q H*, Wang M H. Mirror reflector actuated by liquid droplet[J]. IEEE Photonics Technology Letters, 2014, 26(11):1077-1080.

[13] Liu C, Wang Q H*, Yao L X, Wang M H. Adaptive liquid lens actuated by droplet movement[J]. Micromachines, 2014, 5(3):496-504.

[14] Liu C, Wang Q H*, Wang M H. Optical switch based on hydraulic actuation[J]. Optik-International Journal for Light and Electron Optics, 2014, 125(22): 6661-6664.

[15] Liu C, Wang Q H*, Wang M H, Yao L X. Optical switch matrix based on a liquid-actuated mirror reflector[J]. Optical Engineering, 2014, 53(11):117107.

[16] Liu C, Wang D, Yao L X, Li L, Wang Q H*. Electrowetting-actuated optical switch based on total internal reflection[J]. Applied Optics, 2015, 54(10):2672-2676.

[17] Liu C, Wang D, Yao L X, Li L, Wang Q H*. Optical attenuator based on phase modulation of a spatial light modulator[J]. Chinese Optics Letters, 2015, 13(8):082301-082304.

[18] Liu C, Li L, Wang D, Yao L X, Wang Q H*. Liquid optical switch based on total internal reflection[J]. IEEE Photonics Technology Letters, 2015, 27(19):2091-2094.

[19] Liu C, Wang D*. A light intensity and FOV controlled adaptive fluidic iris[J]. Applied Optics, 2018, 57(18):D27-D31.

[20] Liu C, Wang D, Wang Q H*. A multidirectional beam steering reflector actuated by hydraulic control[J]. Scientific Reports, 2019, 9:5086.

[21] Li S L, Nie Z Q, Tian Y L, Liu C*. Liquid refractive index measurement system based on electrowetting lens [J]. Micromachines, 2019, 10(8): 515.

[22] Jiang Z, Wang D, Zheng Y, Liu C*, and Wang Q H*. Continuous optical zoom microscopy imaging system based on liquid lens [J]. Optics Express, 2021, 29(13): 20322-20335.

[23] Wang D, Xu J B, Yuan R Y, Zhao Y R, Liu C*, and Wang Q H*. High stability liquid lens with optical path modulation function [J]. Optics Express, 2021, 29(17): 27104-27117.

[24] Ruan R Y, Ma X L, Chu F, Wang G X, He M Y, Liu C*, and Wang Q H*. Optofluidic lenticular lens array for a 2D/3D switchable display [J]. Optics Express, 2021, 29(23): 37418-37428.

[25] Zheng Y, Wang D, Jiang Z, Liu C*, and Wang Q H*. Continuous zoom compound eye imaging system based on liquid lenses [J]. Optics Express, 2021, 29(23): 37565-37579.

[26] Xu J B, Zhao Y R, Liu C*, and Wang Q H*. Non-aqueous organic solution based on a large aperture spherical electrowetting liquid lens with a wide tunable focal length range [J]. Journal of Materials Chemistry C, 2022, 17(10): 6778-6793.

[27] Xu J B, Zhao Y R, Liu C*, and Wang Q H*. Triple-layer spherical electrowetting liquid lens with large-aperture and high zoom ratio [J]. Optics and Lasers in Engineering, 2023, 160:107311.

[28] Li L, Liu C, Wang Q H*. Optical switch based on tunable aperture[J]. Optics Letters, 2012, 37(16):3306.

[29] Li L, Liu C, Peng H R, Peng H R, Wang Q H*. Optical switch based on electrowetting liquid lens[J]. Journal of Applied Physics, 2012, 111(10):609-611.

[30] Li L, Liu C, Wang Q H*. Three-step method for optimization of optical thin film[J]. Optik-International Journal for Light and Electron Optics, 2013, 124(14):1796-1799.

[31] Li L, Liu C, Ren H, Wang Q H*. Adaptive liquid iris based on electrowetting[J]. Optics Letters, 2013, 38(13):2336.

[32] Li L, Liu C, Ren H, Wang Q H*. Fluidic optical switch by pneumatic actuation[J]. IEEE Photonics Technology Letters, 2013, 25(25):338-340.

[33] Li L, Liu C, Wang Q H*. Electrowetting-based liquid iris[J]. IEEE Photonics Technology Letters, 2013, 25(10):989-991.

[34] Li L, Liu C, Wang M H, Wang Q H*. Adjustable optical slit based on electrowetting[J]. IEEE Photonics Technology Letters, 2013, 25(24):2423-2426.

[35] Li L, Wang Q H, Liu C, Wang M H*. Adaptive liquid iris for optical switch[J]. Optical Engineering, 2014, 53(4):047105.

[36] Wang M H, Wang Q H*, Liu C. 1×2 optical switch based on electrowetting[J]. Optical Engineering, 2014, 53(5):055103.

[37] Wang D, Liu C, Yao L X, Wang Q H*, Zhou X. Voltage-controlled optical filter based on electrowetting[J]. Chinese Optics Letters, 2014, 12(12):48-51.

[38] Yao L X, Liu C, Wang M H, Li D H, Wang Q H*. RGB converter based on liquid prism[J]. Journal of the Society for Information Display, 2015, 23(1):36-40.

[39] Wang D, Wang Q H*, Shen C, Zhou X, Liu C. Color holographic zoom system based on a liquid lens[J]. Chinese Optics Letters, 2015, 13(7): 072301-72305.

[40] Li L, Liu C, Ren H, Deng H, Wang Q H*. Annular folded electrowetting liquid lens[J]. Optics Letters, 2015, 40(9):1968-1971.

[41] Wang D, Wang D H, Shen C, Liu C, Wang Q H*. Adjustable aperture based on the phase modulation of spatial light modulator[J]. Journal of Display Technology, 2016, 12(5):447-450.

[42] Wang Di, Liu C, She C, Zhou X*, Wang Q H, A holographic zoom system without undesirable light[J]. Optik-International Journal for Light and Electron Optics, 2016, 127(19):7782-7787.

[43] Wang D, Liu C, Li L, Zhou X, Wang Q H*. Adjustable liquid aperture to eliminate undesirable light in holographic projection[J]. Optics Express, 2016, 24(3):2098-2105.

[44] Li L, Liu C, Ren H, Wang Q H*. Optical switchable electrowetting lens[J]. IEEE Photonics Technology Letters, 2016, 28(14):1505-1508.

[45] Li L, Wang D, Liu C, Wang Q H*. Ultrathin zoom telescopic objective[J]. Optics Express, 2016, 24(16):18674-18684.

[46] Li L, Wang D, Liu C, Zhou X, Wang Q H*. Zoom microscope objective using electrowetting lenses[J]. Optics Express, 2016, 24(3):2931-2940.

[47] Wang D, Liu C, Wang Q H*. Holographic zoom micro-projection system based on three spatial light modulators[J]. Optics Express, 2019, 27(6):8048-8058.

[48] Wang D, Liu C, Wang Q H*. Method of chromatic aberration elimination in holographic display based on zoomable liquid lens[J]. Optics Express, 2019, 27(7):10058-10066.

[49] Wang D, Liu C, Chu F, Wang Q H*. Full color holographic display system based on intensity matching of reconstructed image[J]. Optics Express, 2019, 27(12): 16599-16612.

[50] Wang D, Li N N, Liu C, Wang Q H*. Holographic display method to suppress speckle noise based on effective utilization of two spatial light modulators[J]. Optics Express, 2019, 27(8):11617-11625.

[51] Wang Q H, Xiao L, Liu C, Li L*. Optofluidic variable optical path modulator[J]. Scientific Reports, 2019, 9:7082.

[52] Wang D, Liu C, Wang Q H*, Adjustable optical slit based on the phase type spatial light modulator. IEEE Photonics Journal, 2019, 11(2):7000408.

[53] Wang D, Xiao D, Liu S J, Liu C, Wang Q H*. Color holographic display system based on utilization of effective viewing area. Journal of the Society for Information Display, 2019, 1-8.

[54] Wang D, Liu C, Wang Q H*. Color holographic zoom system having controllable light intensity without undesirable light based on multifunctional liquid device. IEEE Access [J]. 2019, 7(1): 99900-99906.

[55] Li N N, Wang D, Liu C, Lin S F, Wang Q H*. Large-size holographic display method based on effective utilization of two spatial light modulators. Optics Communications[J]. 2019, 453(15):124311.

[56] Wang D, Xiao D, Li N N, Liu C, and Wang Q H*. Holographic display system based on effective area expansion of SLM, IEEE Photonics Journal[J]. 2019, 11(6): 7001312.

[57] Wang D, Xiao D, Li N N, Liu C, and Wang Q H*. Method of speckle noise suppression for holographic zoom display based on layered-pixel-scanning algorithm, IEEE Access[J]. 2020, 8(1): 102128-102137.

[58] Wang D, Liu C, Li N N, Liu C, and Wang Q H*. Holographic zoom system with large focal depth based on adjustable lens, IEEE Access[J]. 2020, 8(1): 85784-85792.

[59] Chu F, Wang D, Liu C, Li L, and Wang Q H*. Multi-view 2D/3D switchable display with cylindrical liquid crystal lens array, Crystals[J]. 2021, 11(6):715.

[60] Guo Y Q, Chu F, Li B X, Zhang Y X, Shen T Z, Duan W, Liu C, Sun Y B, Wang Q H*. Unidirectional collective transport of microspheres in nematic liquid crystal by electrically tunable reorientation, Journal of Molecular Liquids [J]. 2022, 357: 119136.

4、授权发明专利

[1]    王琼华,刘超,李磊,一种基于机械湿润效应的液体光开关,2014.09.03,中国,专利号:ZL201210516236.1

[2]    王琼华,刘超,李磊,一种基于电湿润效应的双路液体光开关,2015.04.01,中国,专利号:ZL201310104146.6

[3]    王琼华,王明欢,刘超,一种基于电湿润效应的可变光孔液体光开关,2016.01.27,中国,专利号:ZL201410128499.4

[4]    王琼华,姚黎晓,刘超,一种基于液体棱镜的RGB三色光转换器,2016.09.28,中国,专利号:ZL201510004142. X

[5]    王琼华,王迪,刘超,一种基于空间光调制器的光切换系统,2017.01.25,中国,申请号:ZL201510008864.2

[6]    王琼华,刘超,王迪,姚黎晓,李磊, 一种基于电湿润效应的全反射液体光开关, 2017.03.22,中国,专利号:ZL201510016631.7

[7]    李磊,王琼华,刘超,大光焦度和小像差的液体透镜,2017.10.20,中国,专利号:ZL201510554984.2

[8]    王迪,刘超,一种基于液体器件的全息变焦系统,2020.01.03,中国,专利号:ZL201710890526.5

[9]    王迪,刘超,一种基于液体透镜的彩色全息变焦系统,2020.01.03,中国,专利号:ZL201710890543.9

[10] 王迪,王琼华,刘超,肖聃,李楠楠,一种基于两个空间光调制器有效利用的大尺寸全息显示方法,2020.02.11,专利号:ZL201910374246.8

[11] 王迪,刘超,一种基于光衰减原理的彩色全息显示系统, 2020.04.17,中国,专利号:ZL201711115313.1

[12] 王迪,王琼华,刘超,肖聃,张罗致,一种基于空间光调制器有效区域扩展的大视角全息显示系统,2020.04.10,专利号:ZL201910374242.X

[13] 王迪,王琼华,刘超,一种基于视区特性提高彩色计算全息再现像质量的方法,2020.04.10,中国,专利号:ZL201910246150.3

[14] 王琼华,王迪,刘超,一种基于有效利用空间光调制器的全息散斑噪声抑制方法,中国,2020.04.10,专利号:ZL201910246161.1

[15] 王迪,王琼华,刘超,一种强度匹配的高质量全彩色全息显示系统,中国,2020.04.10,专利号:ZL201910246140.X

[16] 王琼华,王迪,刘超,一种基于光束整形抑制散斑噪声的全息显示系统,中国,2020.04.10,专利号:ZL201910299696.5

[17] 王迪,王琼华,刘超,肖聃,一种基于高光焦度液体透镜的大视角全息显示系统,中国,2020.05.08,专利号:ZL201910374243.4

[18] 王琼华,刘超,王迪,一种基于电润湿透镜的液体折射率测量仪,2020.06.23,中国,专利号:ZL201910246163.0

[19] 王琼华,刘超,王迪,王光旭,江钊,一种可实现光开关和光束导航的多功能反射镜,2020.08.28,专利号:ZL201910923431.8

[20] 王琼华,王迪,刘超,一种光强可调的高质量全息显示系统,中国,2020.08.28,专利号:ZL201910246157.5

[21] 王迪,王琼华,刘超,李移隆,李楠楠,一种基于分层像素扫描算法的全息散斑噪声抑制方法,中国,2020.01.01,专利号:ZL202010149335.5

[22] 王迪,王琼华,李移隆,李楠楠,刘超,一种基于全息图优化分割计算的快速全息图计算方法,2021.03.09,专利号:202010288882.1

[23] 刘超,李世隆,聂仲泉,田彦婷,翟爱平,一种基于电润湿驱动的反射镜式光导航器件及方法,2021.03.30,中国,专利号:ZL201811542822.7

[24] 田彦婷,聂仲泉,郭祥,翟爱平,刘超,二维材料辅助浸渍法制备固体氧化物燃料电池阳极的方法,2020.07.03,中国,专利号:ZL201810408506.4

[25] 刘超,王琼华,王迪,王光旭,江钊,一种可见光和红外光自适应切换的液体光开关,2021.06.15,专利号:ZL202010142298.5

[26] 刘超,王琼华,王迪,一种基于自适应变焦相机的全息实时获取与投影系统,2021.08.10,专利号:ZL201911375160.3

[27] 王迪,王琼华,刘超,储繁,李移隆,一种基于可调液晶光栅的全息真3D显示系统及方法,专利号:ZL202011479541.9

[28] 刘超,王琼华,王迪,一种自适应变倍望远镜,2021.10.22,专利号:ZL201910956274.0

[29] 刘超,王琼华,江钊,郑奕,王迪,一种体视角可调的连续变焦体视显微镜, 2022.03.08 专利号:ZL202110456676.1

[30] 王琼华,刘超,徐近博,江钊,王迪,一种高稳定和光程可调的电润湿液体透镜,2022.04.26,专利号:ZL202110170943.9

[31] 王迪,王琼华,李赵松,李楠楠,李移隆,刘超,一种基于空间光调制器虚拟阵列拼接的全息3D显示系统,2022.5.17,专利号:ZL202110812111.2

5、软件著作权登记

[1]    液体镜头控制系统软件V1.0,原创软件,2021.01.14刘超,王琼华,王迪,江钊,登记号:2021SR0662565

[2]    液态镜头下位机控制软件V1.0,原创软件,2021.02.09刘超,王琼华,王迪,江钊,登记号:2021SR0949775

学术任职

[1]    中国图象图形学学会三维成像与显示专委会委员

[2]    中国光学学会全息与光信息专委会委员

关闭窗口
 
 
 
 
 网站地图 | 返回首页 | 联系我们 

北航仪器科学与光电工程学院显示与成像研究室  地址:北京市海淀区学院路37号