热点链接
 
  当前位置:  
 
刘超
2021-02-24 11:00  

 

   

 

刘超  北京航空航天大学仪器科学与光电工程学院  副教授/博士生导师

研究方向:液体光子器件与成像技术

联系邮箱:chaoliu@buaa.edu.cn

工作经历

2021.01—至今   北京航空航天大学 仪器科学与光电工程学院 副教授

2018.11-2021.01  北京航空航天大学 仪器科学与光电工程学院 博士后

2016.08-2018.11  太原理工大学      物理与光电工程学院      讲师

教育经历

2011.09-2016.07  四川大学     电子信息学院        光学工程 博士研究生

2007.09-2011.07  山西大同大学 物理与电子科学学院 物理学    本科

获奖及荣誉

2018年 太原理工大学青年教师教学竞赛 二等奖

2017年 太原理工大学青年教师教学竞赛 二等奖

2014年 博士研究生国家奖学金

教学和人才培养

曾讲授本科生课程“光学”、“大学物理实验”,目前有在读博士研究生2名、硕士研究生3名。讲授本科综合素养课“液体光子器件”(全英文),研究生专业方向课“光机系统设计”。

科研项目

[1]国家自然科学基金面上项目“基于液体透镜的大视场连续光学变焦显微成像技术”(62175006),2022~2025年(项目负责人)

[2]国家重点研发计划“彩色电子纸显示材料与器件” (2021YFB3600600),2022~2025年(子课题负责人)

[3]国家自然科学基金区域创新发展联合基金项目“面向电润湿光电器件的两相液体封装及其润湿机理研究”(U23A20368),2024~2027年(合作单位负责人)

[4]北京市自然科学基金面上项目“自适应变焦显微成像研究” (4222069),2022~2024年(项目负责人)

[5]北航青年拔尖人才支持计划项目“大视场连续光学变焦显微成像技术” (YWF-21-BJ-J-1174),2021~2025年 (项目负责人)

[6]国家自然科学基金青年基金项目“基于石墨烯导电薄膜的电润湿液体变焦仿生复眼”(61805169),2019~2021年 (项目负责人)

[7]中国博士后科学基金站中特别资助项目“基于光流控透镜的连续光学变焦显微成像技术”(2020T130038),2020~2021年 (项目负责人)

[8]中国博士后科学基金面上项目“基于石墨烯电极的精准调焦全景视场液体仿生复眼研究”(2019M650421),2019~2020年 (项目负责人)

科研成果

在液体光子器件与成像技术方面取得了重要成果:

[1]揭示了微液滴低压快速驱动机理,理论上解释了电润湿介电失效原理,研制了2~10mm不同孔径的电润湿液体透镜;突破了电磁驱动的液体透镜技术,研制了10mm-15mm不同孔径的电磁液体透镜。

[2]研制了基于液体透镜的10×-60×、10×-100×连续光学变焦显微镜以及大视场连续变焦显微镜,实现了无抖动、快速倍率切换和高分辨显微成像。

[3]研制了基于电润湿液体透镜的变焦相机、变焦望远镜、变焦内窥镜、变焦微投影镜头和变焦枪瞄等高性能成像设备,实现了无机械移动的快速变焦功能。

著作、论文与专利

合著专著1部,发表学术论文85篇,授权美国发明专利1件,中国发明专利32件,软件著作权登记2件。

1. 合著专著

[1]王琼华,刘超,王迪,李磊. 《液体光光子器件》. 科学出版社. 2021年.

2. 代表论文

[1]Chao Liu#, Zhao Jiang#, Xin Wang, Yi Zheng, Yi-Wei Zheng, and Qiong-Hua Wang*, Continuous optical zoom microscope with extended depth of field and 3D reconstruction [J]. PhotoniX, 2022, 3:20.

[2]Chao Liu, Yi Zheng, Rong-Ying Yuan, Zhao Jiang, Jin-Bo Xu, You-Ran Zhao, Xin Wang, Xiao-Wei Li, Yan Xing, and Qiong-Hua Wang*, Tunable liquid lenses: emerging technologies and future perspectives[J].Laser & Photonics Reviews, 2023, 17(11):2300274.

[3]Di Wang#, Chao Liu#, Chuan Shen, Yan Xing, and Qiong-Hua Wang*. Holographic capture and projection system of real object based on tunable zoom lens [J]. PhotoniX, 2020, 1:6.

[4]Yi Zheng, Xin Wang, Zhao Jiang, Jin-Bo Xu, Rong-Ying Yuan, You-Ran Zhao, Hao-Ran Zhang, Chao Liu*, and Qiong-Hua Wang*, Adaptive multiscale microscope with fast zooming,extended working distance,and large field of view, Light: Advanced Manufacturing, 5, 8, 2024.

[5]Jin-Bo Xu, You-Ran Zhao, Chao Liu* and Qiong-Hua Wang*. Non-aqueous organic solution based on a large aperture spherical electrowetting liquid lens with a wide tunable focal length range [J]. Journal of Materials Chemistry C, 2022, 17(10): 6778-6793.

3. 其他论文

[6]Chao Liu, Lei Li, and Qiong-Hua Wang*. Liquid prism for beam tracking and steering[J]. Optical Engineering, 2012, 51(11):114002.

[7]Chao Liu, Lei Li, and Qiong-Hua Wang*. Bidirectional optical switch based on electrowetting[J]. Journal of Applied Physics, 2013, 113(19):193106.

[8]Chao Liu, Qiong-Hua Wang*, and Ming-Huan Wang. Mirror reflector actuated by liquid droplet[J]. IEEE Photonics Technology Letters, 2014, 26(11):1077-1080.

[9]Chao Liu, Qiong-Hua Wang*, Li-Xiao Yao, and Ming-Huan Wang. Adaptive liquid lens actuated by droplet movement[J]. Micromachines, 2014, 5(3):496-504.

[10]Chao Liu, Qiong-Hua Wang*, and Ming-Huan Wang. Optical switch based on hydraulic actuation[J]. Optik-International Journal for Light and Electron Optics, 2014, 125(22): 6661-6664.

[11]Chao Liu, Qiong-Hua Wang*, Ming-Huan Wang and Li-Xiao Yao. Optical switch matrix based on a liquid-actuated mirror reflector[J]. Optical Engineering, 2014, 53(11):117107.

[12]Chao Liu, Di Wang, Li-Xiao Yao, Lei Li, and Qiong-Hua Wang*. Electrowetting-actuated optical switch based on total internal reflection[J]. Applied Optics, 2015, 54(10):2672-2676.

[13]Chao Liu, Di Wang, Li-Xiao Yao, Lei Li, and Qiong-Hua Wang*. Optical attenuator based on phase modulation of a spatial light modulator[J]. Chinese Optics Letters, 2015, 13(8):082301-082304.

[14]Chao Liu, Lei Li, Di Wang, Li-Xiao Yao, and Qiong-Hua Wang*. Liquid optical switch based on total internal reflection[J]. IEEE Photonics Technology Letters, 2015, 27(19):2091-2094.

[15]Chao Liu, and Di Wang*. A light intensity and FOV controlled adaptive fluidic iris[J]. Applied Optics, 2018, 57(18):D27-D31.

[16]Chao Liu, Di Wang, and Qiong-Hua Wang*. A multidirectional beam steering reflector actuated by hydraulic control[J]. Scientific Reports, 2019, 9:5086.

[17]Chao Liu, Di Wang, Qiong-Hua Wang*, and Jian-Cheng Fang*. Electrowetting-actuated multifunctional optofluidic lens to improve the quality of computer-generated holography[J]. Optics Express, 2019, 27(9):12963-12975.

[18]Chao Liu, Di Wang, and Qiong-Hua Wang*. Variable aperture with graded attenuation combined with adjustable focal length lens[J]. Optics Express, 2019, 27(10):14075-14084.

[19]Chao Liu, Di Wang, and Qiong-Hua Wang*. Holographic display system with adjustable viewing angle based on multi-focus optofluidic lens [J]. Optics Express, 2019, 27(13):18210-18221.

[20]Chao Liu, Di Wang, Lei Li, and Qiong-Hua Wang*. Multifunction reflector controlled by liquid piston for optical switch and beam steering [J]. Optics Express, 2019, 27(23): 33233-33242.

[21]Chao Liu, Di Wang,Qiong-Hua Wang*, and Yan Xing. Multifunctional optofluidic lens with beam steering [J]. Optics Express, 2020, 28(5): 7734-7745.

[22]Chao Liu, Di Wang, Guang-Xu Wang, Zhao Jiang, and Qiong-Hua Wang*. 1550 nm infrared/visible light switchable liquid optical switch [J]. Optics Express, 2020, 28(6): 8974-8984.

[23]Chao Liu, Yi Zheng, Nan-Nan Li, Ye-Hao Hou, Zhao Jiang, and Qiong-Hua Wang*, Real scene acquisition and holographic near-eye display system based on a zoom industrial endoscope [J]. Optics Express, 2022, 30(18): 33170-33181.

[24]Chao Liu, Yi Zheng, Fan Chu, Yi-Wei Zheng, and Qiong-Hua Wang*, Adaptive micro-projection system based on liquid lens[J].Optics and Laser Technology, 2023, 167:109734.

[25]Shi-Long Li, Zhong-Quan Nie, Yan-Ting Tian, and Chao Liu*. Liquid refractive index measurement system based on electrowetting lens [J]. Micromachines, 2019, 10(8):515.

[26]李世隆, 田彦婷, 刘超*, 基于电润湿驱动的反射镜式光导航.光学学报, 2019, 39(11): 1123003.  

[27]Zhao Jiang, Di Wang, Yi Zheng, Chao Liu*, and Qiong-Hua Wang*. Continuous optical zoom microscopy imaging system based on liquid lens [J]. Optics Express, 2021, 29(13): 20322-20335.

[28]Di Wang, Jin-Bo Xu, Rong-Ying Yuan, You-Ran Zhao, Chao Liu, and Qiong-Hua Wang*. High stability liquid lens with optical path modulation function [J]. Optics Express, 2021, 29(17): 27104-27117.

[29]Rong-Ying Yuan, Xiao-Li Ma, Fan Chu, Guang-Xu Wang, Min-Yang He, Chao Liu*, and Qiong-Hua Wang*. Optofluidic lenticular lens array for a 2D/3D switchable display [J]. Optics Express, 2021, 29(23): 37418-37428.

[30]Yi Zheng, Di Wang, Zhao Jiang, Chao Liu*, and Qiong-Hua Wang*. Continuous zoom compound eye imaging system based on liquid lenses [J]. Optics Express, 2021, 29(23): 37565-37579.

[31]王鑫,赵悠然,徐近博,袁荣英,王琼华,刘超*. 基于电润湿效应驱动的液体菲涅尔透镜. 液晶与显示, 2022, 37(8): 942-947.

[32]Jin-Bo Xu, You-Ran Zhao, Chao Liu* and Qiong-Hua Wang*. Triple-layer spherical electrowetting liquid lens with large-aperture and high zoom ratio [J]. Optics and Lasers in Engineering, 2023, 160:107311.

[33]Rong-Ying Yuan, Xiao-Li Ma, Yi Zheng, Zhao Jiang, Xin Wang, Chao Liu*, and Qiong-Hua Wang*.3D microscope image acquisition method based on zoom objective[J]. Optics Express, 2023, 31(10): 16067-16080.

[34]Jin-Bo Xu, You-Ran Zhao, Rong-Ying Yuan, Xiao-Wei Li, Chao Liu*, and Qiong-Hua Wang*. Electrowetting liquid lens integrating adaptive liquid iris[J]. Optics and Laser Technology, 2024, 169:110023.

[35]Jin-Bo Xu, Rong-Ying Yuan, You-Ran Zhao, Chao Liu*, and Qiong-Hua Wang*. Three-phase electrowetting liquid lens with deformable liquid iris[J]. Optics Express, 2023, 31(26): 43416-43426.

[36]Sandar Tun†, You-Ran Zhao†, Jin-Bo Xu, Xiao-Wei Li, Chao Liu*, and Qiong-Hua Wang*. Dual interface trapezium liquid prism with beam steering function[J]. Optics Express, 2024, 32(3): 3394-3401.

[37]You-Ran Zhao, Jin-Bo Xu, Rong-Ying Yuan, Xin Wang, Lei Li, Chao Liu* and Qiong-Hua Wang*. Tunable optofluidic Fresnel lens with ring-shaped electrodes [J]. Optics and Lasers in Engineering, 2024, 176:108087.

[38]Zhao Jiang, Di Wang, Yi Zheng, Chao Liu*, and Qiong-Hua Wang*. Continuous optical zoom telescopic system based on liquid lenses [J]. Optics Express, 2024, 32(9): 15269-15279.

[39]Lei Li, Chao Liu, and Qiong-Hua Wang*. Optical switch based on tunable aperture[J]. Optics Letters, 2012, 37(16):3306.

[40]Lei Li, Chao Liu, Hua-Rong Peng, and Qiong-Hua Wang*. Optical switch based on electrowetting liquid lens[J]. Journal of Applied Physics, 2012, 111(10):609-611.

[41]Lei Li, Qiong-Hua Wang*, and Chao Liu. Three-step method for optimization of optical thin film[J]. Optik-International Journal for Light and Electron Optics, 2013, 124(14):1796-1799.

[42]Lei Li, Chao Liu, Hong-Wen Ren, and Qiong-Hua Wang*. Adaptive liquid iris based on electrowetting[J]. Optics Letters, 2013, 38(13):2336.

[43]Lei Li, Chao Liu, Hong-Wen Ren, Qiong-Hua Wang*. Fluidic optical switch by pneumatic actuation[J]. IEEE Photonics Technology Letters, 2013, 25(25):338-340.

[44]Lei Li, Chao Liu, and Qiong-Hua Wang*. Electrowetting-based liquid iris[J]. IEEE Photonics Technology Letters, 2013, 25(10):989-991.

[45]Lei Li, Chao Liu, Ming-Huan Wang, and Qiong-Hua Wang*. Adjustable optical slit based on electrowetting[J]. IEEE Photonics Technology Letters, 2013, 25(24):2423-2426.

[46]Lei Li, Qiong-Hua Wang*, Chao Liu, and Ming-Huan Wang. Adaptive liquid iris for optical switch[J]. Optical Engineering, 2014, 53(4):047105.

[47]Ming-Huan Wang, Qiong-Hua Wang*, and Chao Liu. 1×2 optical switch based on electrowetting[J]. Optical Engineering, 2014, 53(5):055103.

[48]Di Wang, Chao Liu, Li-Xiao Yao, Qiong-Hua Wang*, and Xin Zhou. Voltage-controlled optical filter based on electrowetting[J]. Chinese Optics Letters, 2014, 12(12):48-51.

[49]Li-Xiao Yao, Chao Liu, Ming-Huan Wang, Da-Hai Li, and Qiong-Hua Wang*. RGB converter based on liquid prism[J]. Journal of the Society for Information Display, 2015, 23(1):36-40.

[50]Di Wang, Qiong-Hua Wang*, Chuan Shen, Xin Zhou, and Chao Liu. Color holographic zoom system based on a liquid lens[J]. Chinese Optics Letters, 2015, 13(7): 072301-72305.

[51]Lei Li, Chao Liu, Hong-Wen Ren, Huan Deng, and Qiong-Hua Wang*. Annular folded electrowetting liquid lens[J]. Optics Letters, 2015, 40(9):1968-1971.

[52]Di Wang, De-Hong Wang, Chuan Shen, Chao Liu, and Qiong-Hua Wang*. Adjustable aperture based on the phase modulation of spatial light modulator[J]. Journal of Display Technology, 2016, 12(5):447-450.

[53]Di Wang, Chao Liu, Chuan Shen, Xin Zhou, and Qiong-Hua Wang*, A holographic zoom system without undesirable light[J]. Optik-International Journal for Light and Electron Optics, 2016, 127(19):7782-7787.

[54]Di Wang, Chao Liu, Lei Li, Xin Zhou, and Qiong-Hua Wang*. Adjustable liquid aperture to eliminate undesirable light in holographic projection[J]. Optics Express, 2016, 24(3):2098-2105.

[55]Lei Li, Chao Liu, Hong-Wen Ren, and Qiong-Hua Wang*. Optical switchable electrowetting lens[J]. IEEE Photonics Technology Letters, 2016, 28(14):1505-1508.

[56]Lei Li, Di Wang, Chao Liu and Qiong-Hua Wang*. Ultrathin zoom telescopic objective[J]. Optics Express, 2016, 24(16):18674-18684.

[57]Le iLi, Di Wang, Chao Liu and Qiong-Hua Wang*. Zoom microscope objective using electrowetting lenses[J]. Optics Express, 2016, 24(3):2931-2940.

[58]Chang-Kun Shi, Zhong-Quan Nie*, Yan-Ting Tian, Chao Liu, Yong-Chang Zhao, and Bao-Hua Jia. Super-resolution longitudinally polarized light needle achieved by tightly focusing radially polarized beams[J]. Optoelectronics Letters, 2018, 14(1):1-5.

[59]Yong-Chang Zhao, Zhong-Quan Nie*, Ai-Ping Zhai, Yan-Ting Tian, Chao Liu, Chang-Kun Shi, and Bao-Hua Jia. Optical super-resolution effect induced by nonlinear characteristics of graphene oxide films[J]. Optoelectronics Letters, 2018, 14(1):21-24.

[60]Di Wang, Chao Liu, and Qiong-Hua Wang*. Holographic zoom micro-projection system based on three spatial light modulators[J]. Optics Express, 2019, 27(6):8048-8058.

[61]Di Wang, Chao Liu, and Qiong-Hua Wang*. Method of chromatic aberration elimination in holographic display based on zoomable liquid lens[J]. Optics Express, 2019, 27(7):10058-10066.

[62]Di Wang, Chao Liu, Fan Chu, and Qiong-Hua Wang*. Full color holographic display system based on intensity matching of reconstructed image[J]. Optics Express, 2019, 27(12): 16599-16612.

[63]Di Wang, Nan-Nan Li, Chao Liu, and Qiong-Hua Wang*. Holographic display method to suppress speckle noise based on effective utilization of two spatial light modulators[J]. Optics Express, 2019, 27(8):11617-11625.

[64]Qiong-HuaWang, Liang Xiao, Chao Liu and Lei Li*. Optofluidic variable optical path modulator[J]. Scientific Reports, 2019, 9:7082.

[65]Di Wang, Chao Liu, and Qiong-Hua Wang*, Adjustable optical slit based on the phase type spatial light modulator. IEEE Photonics Journal, 2019, 11(2):7000408.

[66]Di Wang, Dan Xiao, Su-Juan Liu, Chao Liu, and Qiong-Hua Wang*. Color holographic display system based on utilization of effective viewing area. Journal of the Society for Information Display, 2019, 1-8.

[67]Di Wang, Chao Liu, and Qiong-Hua Wang*. Color holographic zoom system having controllable light intensity without undesirable light based on multifunctional liquid device. IEEE Access [J]. 2019, 7(1): 99900-99906.

[68]Nan-Nan Li, Di Wang, Chao Liu, Shu-Feng Lin, and Qiong-Hua Wang*. Large-size holographic display method based on effective utilization of two spatial light modulators. Optics Communications[J]. 2019, 453(15):124311.

[69]Di Wang, Dan Xiao, Nan-Nan Li, Chao Liu, and Qiong-Hua Wang*. Holographic display system based on effective area expansion of SLM, IEEE Photonics Journal[J]. 2019, 11(6): 7001312.

[70]Di Wang, Dan Xiao, Nan-Nan Li, Chao Liu, and Qiong-Hua Wang*. Method of speckle noise suppression for holographic zoom display based on layered-pixel-scanning algorithm, IEEE Access[J]. 2020, 8(1): 102128-102137.

[71]Di Wang, Chao Liu, Nan-Nan Li, and Qiong-Hua Wang*. Holographic zoom system with large focal depth based on adjustable lens, IEEE Access[J]. 2020, 8(1): 85784-85792.

[72]Fan Chu, Di Wang, Chao Liu, Lei Li, and Qiong-Hua Wang*. Multi-view 2D/3D switchable display with cylindrical liquid crystal lens array, Crystals[J]. 2021, 11(6):715.

[73]赵悠然, 徐近博, 刘超, 徐近博. 大口径电润湿液体透镜. 真空科学与技术学报[J]. 2021, 41(9): 877-882.

[74]Yu-Qiang Guo, Fan Chu, Bing-Xiang Li, Yu-Xian Zhang, Tian-Zi Shen, Wei Duan, Chao Liu, Yu-Bao Sun*, and Qiong-Hua Wang*. Unidirectional collective transport of microspheres in nematic liquid crystal by electrically tunable reorientation, Journal of Molecular Liquids [J]. 2022, 357: 119136.

[75]王琼华, 袁荣英, 刘超. 基于电润湿液体透镜的显微成像技术.北京航空航天大学学报[J].2022, 48(9):1774-1781.

[76]Di Wang†, Yi-Long Li†, Fan Chu†, Nan-Nan, Li, Zhao-Song Li, Sin-Doo Lee, Zhong-Quan Nie, Chao Liu and Qiong-Hua Wang*, Color liquid crystal grating based color holographic 3D display system with large viewing angle, Light: Science & Applications, 13:16, 2024 .

[77]Di Wang†, Zhao-Song Li†, Yi Zheng, You-Ran Zhao, Chao Liu, Jin-Bo Xu, Yi-Wei Zheng, Qian Huang, Chen-Liang Chang, Da-Wei Zhang, Song-Lin Zhuang and Qiong-Hua Wang*, Liquid lens based holographic camera for real 3D scene hologram acquisition using end-to-end physical model-driven network, Light: Science & Applications, 13:62, 2024.

[78]Yi-Jian Liu, Xue-Rui Wen, Xiao-Shuai Hu, Wei-Ze Li, Yan Xing, Chao Liu, Han-Le Zhang*, and Qiong-Hua Wang*, High-Resolution Integral Imaging Display Using Targeted Optimized Compound Lens Array for Voxel Aliasing Elimination, Laser & Photonics Reviews,18(7), 202400182, 2024.

[79]Di Wang†, Yi-Long Li†, Xin-Ru Zheng, Ruo-Nan Ji*, Xin Xie, Kun Song, Fan-Chuan Lin, Nan-Nan Li, Zhao Jiang, Chao Liu, Yi-Wei Zheng, Shao-Wei Wang, Wei Lu, Bao-Hua Jia, Qiong-Hua Wang*. Decimeter-depth and polarization addressable color 3D meta-holography. Nature Communications, 15:8242, 2024.

[80]Chao Liu, Di Wang, Li-Xiao Yao, Lei Li, and Qiong-Hua Wang*. P-122: Liquid Optical Switch Based on Total Reflection[J]. Sid Symposium Digest of Technical Papers, 2015, 46(1):1624-1626. San Jose,US. 2015.06.02-2015.06.04.

[81]Chao Liu, Di Wang, and Qiong-Hua Wang*. Liquid refractive index measurement system by adaptive lens,” Proc. SPIE 11434, 2019 International Conference on Optical Instruments and Technology: Optical Systems and Modern Optoelectronic Instruments, 114340K. Beijing, China. 2019.11.02-2019.11.04.

[82]Li-Xiao Yao, Chao Liu, Ming-Huan Wang, and Qiong-Hua Wang*. P-112: A Wavelength Converter Based on Electrowetting[J]. Sid Symposium Digest of Technical Papers, 2015, 46(1):1588-1591.

[83]Lei Li, Chao Liu, and Qiong-Hua Wang*. Ultrathin zoom lens system based on liquid lenses[J]. Proc. SPIE 9524, 2015, 95241B. Singapore, 2015.07.17-2015.07.21.

[84]Wu-Xiang Zhao, Dong Liang, Jie Zhang, Chao Liu, Shang-Fei Zang, and Qiong-Hua Wang*. Variable-focus cylindrical liquid lens array[J]. Proc. SPIE 8769, 2013, 87690Y. Singapore, 2013.06.22-2015.07.26.

[85]Di Wang, Nan-Nan Li, Chao Liu, and Qiong-Hua Wang*. Holographic display system to suppress speckle noise based on two spatial light modulators. Digital Holography and Three-Dimensional Imaging 2019, W2A.8, 1-2, 2019.

4、授权发明专利

[1]Di Wang, Qiong-Hua Wang, Chao Liu, Chu Fan, and Yi-Long Li, Tunable crystal grating-based holographic true 3D display system and method,美国专利号:US 11860385B2

[2]王琼华,刘超,李磊,一种基于机械湿润效应的液体光开关,2014.09.03,中国,专利号:ZL201210516236.1

[3]王琼华,刘超,李磊,一种基于电湿润效应的双路液体光开关,2015.04.01,中国,专利号:ZL201310104146.6

[4]王琼华,王明欢,刘超,一种基于电湿润效应的可变光孔液体光开关,2016.01.27,中国,专利号:ZL201410128499.4

[5]王琼华,姚黎晓,刘超,一种基于液体棱镜的RGB三色光转换器,2016.09.28,中国,专利号:ZL201510004142. X

[6]王琼华,王迪,刘超,一种基于空间光调制器的光切换系统,2017.01.25,中国,申请号:ZL201510008864.2

[7]王琼华,刘超,王迪,姚黎晓,李磊, 一种基于电湿润效应的全反射液体光开关, 2017.03.22,中国,专利号:ZL201510016631.7

[8]李磊,王琼华,刘超,大光焦度和小像差的液体透镜,2017.10.20,中国,专利号:ZL201510554984.2

[9]王迪,刘超,一种基于液体器件的全息变焦系统,2020.01.03,中国,专利号:ZL201710890526.5

[10]王迪,刘超,一种基于液体透镜的彩色全息变焦系统,2020.01.03,中国,专利号:ZL201710890543.9

[11]王迪,王琼华,刘超,肖聃,李楠楠,一种基于两个空间光调制器有效利用的大尺寸全息显示方法,2020.02.11,专利号:ZL201910374246.8

[12]王迪,刘超,一种基于光衰减原理的彩色全息显示系统, 2020.04.17,中国,专利号:ZL201711115313.1

[13]王迪,王琼华,刘超,肖聃,张罗致,一种基于空间光调制器有效区域扩展的大视角全息显示系统,2020.04.10,专利号:ZL201910374242.X

[14]王迪,王琼华,刘超,一种基于视区特性提高彩色计算全息再现像质量的方法,2020.04.10,中国,专利号:ZL201910246150.3

[15]王琼华,王迪,刘超,一种基于有效利用空间光调制器的全息散斑噪声抑制方法,中国,2020.04.10,专利号:ZL201910246161.1

[16]王迪,王琼华,刘超,一种强度匹配的高质量全彩色全息显示系统,中国,2020.04.10,专利号:ZL201910246140.X

[17]王琼华,王迪,刘超,一种基于光束整形抑制散斑噪声的全息显示系统,中国,2020.04.10,专利号:ZL201910299696.5

[18]王迪,王琼华,刘超,肖聃,一种基于高光焦度液体透镜的大视角全息显示系统,中国,2020.05.08,专利号:ZL201910374243.4

[19]王琼华,刘超,王迪,一种基于电润湿透镜的液体折射率测量仪,2020.06.23,中国,专利号:ZL201910246163.0

[20]王琼华,刘超,王迪,王光旭,江钊,一种可实现光开关和光束导航的多功能反射镜,2020.08.28,专利号:ZL201910923431.8

[21]王琼华,王迪,刘超,一种光强可调的高质量全息显示系统,中国,2020.08.28,专利号:ZL201910246157.5

[22]王迪,王琼华,刘超,李移隆,李楠楠,一种基于分层像素扫描算法的全息散斑噪声抑制方法,中国,2020.01.01,专利号:ZL202010149335.5

[23]王迪,王琼华,李移隆,李楠楠,刘超,一种基于全息图优化分割计算的快速全息图计算方法,2021.03.09,专利号:202010288882.1

[24]刘超,李世隆,聂仲泉,田彦婷,翟爱平,一种基于电润湿驱动的反射镜式光导航器件及方法,2021.03.30,中国,专利号:ZL201811542822.7

[25]田彦婷,聂仲泉,郭祥,翟爱平,刘超,二维材料辅助浸渍法制备固体氧化物燃料电池阳极的方法,2020.07.03,中国,专利号:ZL201810408506.4

[26]刘超,王琼华,王迪,王光旭,江钊,一种可见光和红外光自适应切换的液体光开关,2021.06.15,专利号:ZL202010142298.5

[27]刘超,王琼华,王迪,一种基于自适应变焦相机的全息实时获取与投影系统,2021.08.10,专利号:ZL201911375160.3

[28]王迪,王琼华,刘超,储繁,李移隆,一种基于可调液晶光栅的全息真3D显示系统及方法,专利号:ZL202011479541.9

[29]刘超,王琼华,王迪,一种自适应变倍望远镜,2021.10.22,专利号:ZL201910956274.0

[30]刘超,王琼华,江钊,郑奕,王迪,一种体视角可调的连续变焦体视显微镜, 2022.03.08, 专利号:ZL202110456676.1

[31]王琼华,刘超,徐近博,江钊,王迪,一种高稳定和光程可调的电润湿液体透镜,2022.04.26,专利号:ZL202110170943.9

[32]王迪,王琼华,李赵松,李楠楠,李移隆,刘超,一种基于空间光调制器虚拟阵列拼接的全息3D显示系统,2022.5.17,专利号:ZL202110812111.2

[33]刘超,王琼华,郑奕,江钊,徐近博,一种基于复眼结构的大视场连续变倍显微系统及方法,2023.05.02,专利号:ZL202210491350.7

5、软件著作权登记

[1]液体镜头控制系统软件V1.0,原创软件,2021.01.14,刘超,王琼华,王迪,江钊,登记号:2021SR0662565

[2]液态镜头下位机控制软件V1.0,原创软件,2021.02.09,刘超,王琼华,王迪,江钊,登记号:2021SR0949775

学术任职

[1]中国感光学会立体影像技术专委会 副主任委员

[2]中国图象图形学学会三维成像与显示专委会 委员

[3]中国光学学会全息与光信息专委会 委员

[4]《应用光学》青年编委



关闭窗口
 
 
 
 
 网站地图 | 返回首页 | 联系我们 

北航仪器科学与光电工程学院显示与成像研究室  地址:北京市海淀区学院路37号