王迪 北京航空航天大学仪器科学与光电工程学院 副教授
研究方向:3D显示技术
联系邮箱:diwang18@buaa.edu.cn
工作经历
2022.02—至今 北京航空航天大学 仪器科学与光电工程学院 副教授
2018.11-2021.01 北京航空航天大学 仪器科学与光电工程学院 博士后
2017.06-2018.11 山西大学 物理电子工程学院 讲师
教育经历
2012.09-2017.06 四川大学 电子信息学院 光学 博士研究生
2008.09-2012.06 四川大学 电子信息学院 光信息科学与技术 本科
获奖及荣誉
2020年 北京航空航天大学2019年度优秀博士后
2017年 山西大学优秀政治指导员
科研项目
[1] 国家自然科学基金面上项目“大视角动态全息近眼3D显示技术”(62275009),2023~2026年(项目负责人)
[2] 国家自然科学基金联合基金项目“高密度全景深宽视场全息三维显示关键技术研究”(U22A2079),2023~2026年(课题负责人)
[3] 国家重点研发计划“临场真实感近眼三维显示技术与装置”(2021YFB2802100),2021~2024年(子课题负责人)
[4] 国家自然科学基金青年基金项目“基于液体透镜的快速高质量计算全息三维显示技术”(61805130),2019~2021年(项目负责人)
[5] 中国博士后科学基金站中特别资助项目“高分辨率动态全息近眼3D显示技术”(2020T130039),2020~2021年(项目负责人)
[6] 中国博士后科学基金面上项目“基于液体透镜的动态大视角计算全息三维显示技术”(2019M650422),2019~2020年(项目负责人)
[7] 山西省应用基础研究计划项目“基于大数据处理的全息三维视频实时获取与再现技术”(201801D221169),2018-2020年(项目负责人)
科研成果
在3D显示技术方面取得了重要成果:
[1] 在理论方面,提出了基于有效视区利用的全息显示衍射机理,在该机理指导下攻克了全息图快速生成技术,相较于常规技术,可将全息图计算速度提高2倍以上,实现了真实物体的全息再现;提出了消杂散光的高分辨率全息显示技术,信噪比达10dB以上,推进了全息在AR显示中的应用。
[2] 在系统方面,研制了宽视角大尺寸全息3D显示系统,相较于国外同类技术,该系统将视角提升至57.4度,尺寸扩大了4.2倍,解决了现有全息3D显示视角小的难题。相关研究成果得到金国藩院士、德国W. Osten教授(SPIE/OSA Fellow)等光学领域知名专家的认可和正面评价。
论文与专利
发表SCI收录论文70余篇,其中第一作者/通讯作者33篇。Web of Science统计引用800余次,h指数11,研究成果被Science、Nature Photonics、Nature Communications等顶级期刊引用。申请中国发明专利50余件,其中已授权40件且9件实现成果转化,申请国际发明专利5件。
代表论文
[1] Di Wang†, Zhao-Song Li†, Yi Zheng, You-Ran Zhao, Chao Liu, Jin-Bo Xu, Yi-Wei Zheng, Qian-Huang, Chen-Liang Chang, Da-Wei Zhang, Song-Lin Zhuang, and Qiong-Hua Wang*, “Liquid lens based holographic camera for real 3D scene hologram acquisition using end-to-end physical model-driven network,” Light: Science & Applications, 13, 62, 2024.
[2] Di Wang†, Yi-Long Li†, Fan Chu†, Nan-Nan Li, Zhao-Song Li, Sin-Doo Lee, Zhong-Quan Nie, Chao Liu, and Qiong-Hua Wang*, “Color liquid crystal grating based color holographic 3D display system with large viewing angle,” Light: Science & Applications, 13, 16, 2024.
[3] Yi-Long Li†, Nan-Nan Li†, Di Wang*, Fan Chu, Sin-Doo Lee, Yi-Wei Zheng and Qiong-Hua Wang*, “Tunable liquid crystal grating based holographic 3D display system with wide viewing angle and large size,” Light: Science & Applications, 11, 188, 2022.
[4] Di Wang†, Zhao-Song Li†, Yi-Wei Zheng†, Nan-Nan Li, Yi-Long Li, and Qiong-Hua Wang*, “High-quality holographic 3D display system based on virtual splicing of spatial light modulator,” ACS Photonics, 10(7), 2297-2307, 2023.
[5] Di Wang†, Nan-Nan Li†, Yi-Long Li, Yi-Wei Zheng, Zhong-Quan Nie, Zhao-Song Li, Fan Chu*, and Qiong-Hua Wang*, “Large viewing angle holographic 3D display system based on maximum diffraction modulation,” Light: Advanced Manufacturing, 4, 18, 2023.
[6] Di Wang, Nan-Nan Li, Zhao-Song Li, Chun Chen, Byoungho Lee and Qiong-Hua Wang*, “Color curved hologram calculation method based on angle multiplexing,” Optics Express, 30(2), 3157-3171, 2022.
[7] Di Wang, Nan-Nan Li, Yi-Long Li, Yi-Wei Zheng, and Qiong-Hua Wang*, “Curved hologram generation method for speckle noise suppression based on stochastic gradient descent algorithm,” Optics Express, 29(26), 42650-42662, 2021.
[8] Di Wang, Jin-Bo Xu, Rong-Ying Yuan, You-Ran Zhao, Chao Liu, and Qiong-Hua Wang*, “High stability liquid lens with optical path modulation function,” Optics Express, 29(17), 27104-27117, 2021.
[9] Di Wang, Chao Liu, Chuan Shen, Yan Xing, and Qiong-Hua Wang*, “Holographic capture and projection system of real object based on tunable zoom lens,” PhotoniX, 1(1), 6, 2020.
[10] Di Wang, Nan-Nan Li, Chao Liu, and Qiong-Hua Wang*, “Holographic display method to suppress speckle noise based on effective utilization of two spatial light modulators,” Optics Express, 27(8), 11617-11625, 2019.
其他论文:
[11] Di Wang, Yi-Wei Zheng, Nan-Nan Li, and Qiong-Hua Wang*, “Holographic display system to suppress speckle noise based on beam shaping,” Photonics, 8(6), 204, 2021.
[12] Di Wang, Chao Liu, Shu-Feng Lin, and Qiong-Hua Wang*, “Holographic display technology based on liquid crystal device,” Journal of the Society for Information Display, 28(2), 136-147, 2020.
[13] Di Wang, Chao Liu, and Qiong-Hua Wang*, “Adjustable optical slit based on the phase type spatial light modulator,” IEEE Photonics Journal, 11(2), 7000408, 2019.
[14] Di Wang, Dan Xiao, Su-Juan Liu, Chao Liu, and Qiong-Hua Wang*, “Color holographic display system based on utilization of effective viewing area,” Journal of the Society for Information Display, 27(10), 646-653, 2019.
[15] Di Wang, Dan Xiao, Nan-Nan Li, Chao Liu, and Qiong-Hua Wang*, “Holographic display system based on effective area expansion of SLM,” IEEE Photonics Journal, 11(6), 7001312, 2019.
[16] Di Wang, Chao Liu, Fan Chu, and Qiong-Hua Wang*, “Full color holographic display system based on intensity matching of reconstructed image,” Optics Express, 27(12), 16599-16612, 2019.
[17] Di Wang, Chao Liu, and Qiong-Hua Wang*, “Holographic zoom micro-projection system based on three spatial light modulators,” Optics Express, 27(6), 8048-8058, 2019.
[18] Di Wang, Chao Liu, and Qiong-Hua Wang*, “Method of chromatic aberration elimination in holographic display based on zoomable liquid lens,”Optics Express, 27(7), 10058-10066, 2019.
[19] Di Wang, Chao Liu, Lei Li, Xin Zhou, and Qiong-Hua Wang*, “Adjustable liquid aperture to eliminate undesirable light in holographic projection,” Optics Express, 24(3), 2098-2105, 2016.
[20] Di Wang, De-Hong Wang, Chuan Shen, Chao Liu, and Qiong-Hua Wang*, “Adjustable aperture based on the phase modulation of spatial light modulator,” IEEE Journal of Display Technology, 12(5), 447-450, 2016.
[21] Di Wang, Chao Liu, Chuan Shen, Xin Zhou, and Qiong-Hua Wang*, “A holographic zoom system without undesirable light,” Optik, 127(19), 7782-7787, 2016.
[22] Di Wang, Qiong-Hua Wang*, Chuan Shen, Xin Zhou, and Chao Liu, “Color holographic zoom system based on a liquid lens,” Chinese Optics Letters, 13(7), 072301, 2015.
[23] Di Wang, Qiong-Hua Wang*, Xin Zhou, and Cui Wang, “Holographic projection method to realize adjusting location of reconstruction,” Optik, 126(24), 5372-5375, 2015.
[24] Di Wang, Qiong-Hua Wang*, Jun Wang, Xin Zhou and Da-Hai Li, “Color holographic display method based on a single-spatial light modulator”, Optical Engineering , 53(4), 045104. 2014.
[25] Di Wang, Qiong-Hua Wang*, Chuan Shen, Xin Zhou and Chun-Mei Liu, “Active optical zoom system”, Applied Optics, 53(31), 7402-7406, 2014.
[26] Di Wang, Chao Liu, Qiong-Hua Wang*, and Xin Zhou, “Voltage controlled optical filter based on electrowetting,” Chinese Optics Letters, 12(12), 121102, 2014.
[27] Nan-Nan Li, Chun Chen, Byoungho Lee, Di Wang*, and Qiong-Hua Wang*, “Speckle noise suppression algorithm of holographic display based on spatial light modulator (Invited),” Frontiers in Photonics, 2, 825610, 2022.
[28] Su-Juan Liu, Ning-Tao Ma, Ping-Ping Li, and Di Wang*, “Holographic near-eye 3D display method based on large-size hologram,” Frontiers in Materials, 8, 739449, 2021.
[29] Su-Juan Liu, Ning-Tao Ma, Feng-Xiao Zhai, Nan-Nan Liu, Ping-Ping Li, Yun-Qi Hao, and Di Wang*, “Large field-of-view holographic display method with speckle noise suppression based on time multiplexing,” Journal of the Society for Information Display, 29(10), 758-767, 2021.
[30] Su-Juan Liu, Di Wang*, Feng-Xiao Zhai, Nan-Nan Liu, and Qi-Yun Hao, “Holographic display method with a large field of view based on holographic functional screen,” Applied Optics, 59(20), 5983-5988, 2020.
[31] Chen-Liang Chang, Di Wang, Dong-Chen Zhu, Jia-Mao Li*, Jun Xia, and Xiao-Lin Zhang, “Deep learning based computer-generated hologram from a stereo image pair,” Optics Letters, 47(6), 1482-1485, 2022.
[32] Yi Zheng, Di Wang, Zhao Jiang, Chao Liu, and Qiong-Hua Wang*, “Continuous zoom compound eye imaging system based on liquid lenses,” Optics Express, 29(23), 37565-37579, 2021.
[33] Zhao Jiang, Di Wang, Yi Zheng, Chao Liu, and Qiong-Hua Wang*, “Continuous optical zoom microscopy imaging system based on liquid lenses,” Optics Express, 29(13), 20322-20335, 2021.
[34] Chen Chun, Byounghyo Lee, Nan-Nan Li, Minseok Chae, Di Wang, Qiong-Hua Wang, and Byoungho Lee*, “Multi-depth hologram generation using stochastic gradient descent algorithm with complex loss function,” Optics Express, 29(10), 15089-15103, 2021.
[35] Shu-Feng Lin, Philippe Gentet, Di Wang, Seung-Hyun Lee, Eun-Soo Kim, and Qiong-Hua Wang*, “Simply structured full-color holographic three-dimensional display using angular-compensating holographic optical element,” Optics and Lasers in Engineering, 138, 106404, 2021.
[36] Yi-Long Li, Di Wang, Nan-Nan Li, and Qiong-Hua Wang*, “Fast hologram generation method based on the optimal segmentation of a sub-CGH,” Optics Express, 28(21), 32185-32198, 2020.
[37] Nan-Nan Li, Di Wang, Yi-Long Li, and Qiong-Hua Wang*, “Method of curved composite hologram generation with suppressed speckle noise,” Optics Express, 28(23), 34378-34389, 2020.
[38] Chao Liu, Di Wang, Guang-Xu Wang, Zhao Jiang, and Qiong-Hua Wang*, “1550 nm infrared/visible light switchable liquid optical switch,” Optics Express, 28(6), 8974-8984, 2020.
[39] Chao Liu, Di Wang, Qiong-Hua Wang*, and Yan Xing, “Multifunctional optofluidic lens with beam steering,” Optics Express, 28(5), 7734-7745, 2020.
[40] Chao Liu, Di Wang, and Qiong-Hua Wang*, “A multidirectional beam steering refector actuated by hydraulic control,” Scientific Reports, 9, 5086, 2019.
[41] Chao Liu, Di Wang, Qiong-Hua Wang*, and Jiancheng Fang, “Electrowetting-actuated multifunctional optofluidic lens to improve the quality of computer-generated holography,” Optics Express, 27(9), 12963-12975, (2019).
[42] Chao Liu, Di Wang, and Qiong-Hua Wang*, “Variable aperture with graded attenuation combined with adjustable focal length lens,” Optics Express, 27(10), 14075-14084, 2019.
[43] Chao Liu, Di Wang, and Qiong-Hua Wang*, “Holographic display system with adjustable viewing angle based on multi-focus optofluidic lens,” Optics Express, 27(13), 18210-18221, 2019.
[44] Chao Liu, Di Wang, Lei Li, and Qiong-Hua Wang*, “Multifunction reflector controlled by liquid piston for optical switch and beam steering,” Optics Express, 27(23), 33233-33242, 2019.
[45] Shu-Feng Lin, Di Wang, Qiong-Hua Wang* and Eun-Soo Kim, “Full-color holographic 3D display system using off-axis color-multiplexed-hologram on single SLM,” Optics and Lasers in Engineering, 126, 105895, 2020.
[46] Lei Li, Di Wang, Chao Liu, and Qiong-Hua Wang*, “Ultrathin zoom telescopic objective,” Optics Express, 24(16), 18674-18684, 2016.
[47] Lei Li, Di Wang, Chao Liu, and Qiong-Hua Wang*, “Zoom microscope objective using electrowetting lenses,” Optics Express, 24(3), 2931-2940, 2016.
授权发明专利
[1] Di Wang, Qiong-Hua Wang, Chao Liu, Chu Fan, and Yi-Long Li, Tunable crystal grating-based holographic true 3D display system and method, U.S. Patent No.11,860,385
[2] 王琼华,王迪,刘超,一种基于空间光调制器的光切换系统,授权号:ZL201510008864.2
[3] 王琼华,王迪,王德宏,李松杰,一种基于可调光阑的全息投影系统,授权号:ZL201510710428.X
[4] 王琼华,王迪,王德宏,甘凤娇,一种消不良光的全息变焦系统,授权号:ZL201510180501.7
[5] 王琼华,王迪,王德宏,刘素娟,一种基于空间光调制器的可调光阑,授权号:ZL201510638412.2
[6] 王琼华,王德宏,王迪,一种基于可变焦透镜的彩色计算全息色差补偿系统及方法,授权号:201410585494.4
[7] 王琼华,刘超,王迪,一种基于电湿润效应的全反射液体光开关,授权号:201510016631.7
[8] 王琼华,魏溶,王迪,一种基于可编程正交密接柱透镜的光学变焦系统及变焦方法,授权号:ZL201510712268.2
[9] 王琼华,魏溶,王迪,刘素娟,一种基于数字柱透镜的全息投影系统,授权号:ZL201510648078.9
[10] 王琼华,刘素娟,王迪,一种减少再现浪费信息的计算全息图生成方法,授权号:ZL201610400842.5
[11] 王琼华,李松杰,刘素娟,王迪,一种基于哈希函数的计算全息加密方法,授权号:ZL201610758363.0
[12] 王琼华,肖聃,王迪,一种基于LCoS的光切换器,授权号:ZL201611244833.8
[13] 王琼华,肖聃,王迪,一种基于数字透镜的彩色计算全息杂光消除系统及方法,授权号:201710301725.8
[14] 王迪,刘超,一种基于光衰减原理的彩色全息显示系统,授权号:ZL201711115313.1
[15] 王迪,刘超,一种基于液体器件的全息变焦系统,授权号:ZL201710890526.5
[16] 王迪,刘超,一种基于液体透镜的彩色全息变焦系统,授权号:ZL201710890543.9
[17] 王迪,王琼华,刘超,一种基于视区特性提高彩色计算全息再现像质量的方法,授权号:ZL201910246150.3
[18] 王琼华,王迪,刘超,一种基于有效利用空间光调制器的全息散斑噪声抑制方法,授权号:ZL201910246161.1
[19] 王琼华,王迪,刘超,一种光强可调的高质量全息显示系统,授权号:ZL201910246157.5
[20] 王迪,王琼华,刘超,一种强度匹配的高质量全彩色全息显示系统,授权号:ZL201910246140.X
[21] 王琼华,王迪,刘超,一种基于光束整形抑制散斑噪声的全息显示系统,授权号:ZL201910299696.5
[22] 王迪,王琼华,刘超,肖聃,一种基于高光焦度液体透镜的大视角全息显示系统,授权号:ZL201910374243.4
[23] 王迪,王琼华,刘超,肖聃,李楠楠,一种基于两个空间光调制器有效利用的大尺寸全息显示方法,授权号:ZL201910374246.8
[24] 王迪,王琼华,刘超,肖聃,张罗致,一种基于空间光调制器有效区域扩展的大视角全息显示系统,授权号:ZL201910374242.X
[25] 王迪,王琼华,刘超,李楠楠,李移隆,一种基于分层像素扫描算法的全息散斑噪声抑制方法,授权号:ZL202010149335.5
[26] 王迪,王琼华,李移隆,李楠楠,刘超,一种基于全息图优化分割计算的快速全息图计算方法,专利号:ZL202010288882.1
[27] 王琼华,刘超,王迪,一种基于电润湿透镜的液体折射率测量仪,授权号:ZL201910246163.0
[28] 王琼华,刘超,王迪,王光旭,江钊,一种可实现光开关和光束导航的多功能反射镜,授权号:ZL201910923431.8
[29] 王琼华,李楠楠,王迪,李移隆,一种基于数字轴锥镜的全息轴向色差补偿方法,专利号:ZL201911050077.9
[30] 刘超,王琼华,王迪,一种自适应变倍望远镜,授权号:ZL201910956274.0
[31] 刘超,王琼华,王迪,一种基于自适应变焦相机的全息实时获取与投影系统,授权号:ZL201911375160.3
[32] 刘超,王琼华,王迪,王光旭,江钊,一种可见光和红外光自适应切换的液体光开关,授权号:ZL202010142298.5
[33] 王琼华,李楠楠,王迪,李移隆,一种低散斑噪声的彩色全息显示系统,授权号:ZL202010410454.1
[34] 王琼华,王迪,郑义微,李赵松,一种基于纯相位复合曲面全息图的全息显示系统,授权号:ZL202011110949.9
[35] 王迪,王琼华,刘超,储繁,李移隆,一种基于可调液晶光栅的全息真3D显示系统及方法,授权号:ZL202011479541.9
[36] 王迪,王琼华,李赵松,李楠楠,李移隆,刘超,一种基于空间光调制器虚拟阵列拼接的全息3D显示系统,授权号:ZL202110812111.2
[37] 王迪,王琼华,郑义微,何岷阳,马晓莉,一种基于随机梯度下降算法的曲面全息噪声抑制方法,授权号:ZL202111018439.3
[38] 王迪,庞应飞,王琼华,一种基于衍射模糊成像原理的无串扰全息3D显示方法,授权号:ZL20211093000.1
[39] 张罗致,王琼华,周昕,余展,王迪,一种非级联光学扫描全息的多图像并行加密方法,授权号:ZL202110777222.4
[40] 王琼华,刘超,徐近博,江钊,王迪,一种高稳定和光程可调的电润湿液体透镜,授权号:202110170943.9
[41] 刘超,王琼华,江钊,郑奕,王迪,一种体视角可调的连续变焦体视显微镜,授权号:ZL202110456676.1
[42] 王琼华,郑义微,王迪,李赵松,一种基于液晶锥透镜的大视角全息近眼显示方法,授权号:ZL202210882538.4
[43] 王迪,王琼华,李楠楠,郑义微,李赵松,一种基于高频相位因子的偏振全息图计算方法,授权号:ZL202111291081.1
申请国际发明专利
[44] Di Wang, Qiong-Hua Wang, Chao Liu, Chu Fan, and Yi-Long Li, Holographic true 3D display system and method based on adjustable liquid crystal grating, 国际申请号:PCT/CN2021/070320
[45] Di Wang, Qiong-Hua Wang, Zhao-Song Li, Nan-Nan Li, Yi-Long Li, and Chao Liu, Holographic 3D display system based on virtual array splicing of spatial light modulator, 国际申请号:PCT/CN2021/111015
[46] Di Wang, Ying-Fei Pang, Qiong-Hua Wang, Li-Jun Xu, Nan-Nan Li, and Zhao-Song Li, Crosstalk-free holographic 3D display method based on the principle of diffraction blur imaging, 国际申请号:PCT/CN2021/115786
[47] Di Wang, Qiong-Hua Wang, Nan-Nan Li, Yi-Wei Zheng, and Zhao-Song Li, Calculation method of polarization hologram based on high-frequency phase factor, 国际申请号:PCT/CN2021/132856
申请中国发明专利
[48] 刘超,王琼华,郑奕,江钊,王迪,一种基于液体变焦相机的智能门禁识别系统,申请号:202011517366.8
[49] 王迪,王琼华,李赵松,黄倩,侯页好,一种基于物理模型驱动网络的全息图计算方法,申请号:202211556319.3
[50] 王琼华,王迪,储繁,侯页好,黄倩,一种大视角全息3D显示方法,申请号:202211556737.2
[51] 王迪,王琼华,李赵松,黄倩,侯页好,一种基于物理模型驱动网络的全息图计算方法,申请号:202211556319.3
[52] 王琼华,王迪,储繁,侯页好,黄倩,一种大视角全息3D显示方法,申请号:202211556737.2
[53] 王迪,王琼华,储繁,李移隆,李楠楠,一种基于液晶光栅的大视角彩色全息3D显示系统,申请号:202310023225.8
[54] 王琼华,黄倩,侯页好,王迪,郑义微,一种基于共形衍射原理的彩色球面全息显示系统,申请号:202311064468.2
[55] 王琼华,黄倩,王迪,侯页好,林凡川,一种基于高频信息提取的快速全息图生成方法,申请号:2023114870945
[56] 王琼华,王迪,李移隆,黄倩,一种大深度超表面偏振全息3D显示方法,申请号:202311561884.3
[57] 王琼华,王迪,李赵松,郑奕,赵悠然,一种基于物理模型驱动网络和液体透镜的全息相机,申请号:202311728574.6,
[58] 王迪,王琼华,胡毅枭,赵芮宜,黄倩,一种基于分数阶傅立叶变换算法的低噪声全息图生成方法,申请号:202410171212X