热点链接
 
  当前位置:  
 
王迪
2022-02-12 12:13  

 

王迪  北京航空航天大学仪器科学与光电工程学院  副教授

研究方向:3D显示技术

联系邮箱:diwang18@buaa.edu.cn



工作经历

2022.02至今   北京航空航天大学  仪器科学与光电工程学院  副教授

2018.11-2021.01  北京航空航天大学  仪器科学与光电工程学院  博士后

2017.06-2018.11  山西大学          物理电子工程学院        讲师

教育经历

2012.09-2017.06  四川大学   电子信息学院       光学      博士研究生

2008.09-2012.06  四川大学   电子信息学院  光信息科学与技术    本科

获奖及荣誉

2020 北京航空航天大学2019年度优秀博士后

2017 山西大学优秀政治指导员

科研项目

[1] 国家自然科学基金面上项目“大视角动态全息近眼3D显示技术”(62275009),2023~2026年(项目负责人)

[2] 国家自然科学基金联合基金项目“高密度全景深宽视场全息三维显示关键技术研究”(U22A2079),2023~2026年(课题负责人)

[3] 国家重点研发计划“临场真实感近眼三维显示技术与装置”(2021YFB2802100),2021~2024年(子课题负责人)

[4] 国家自然科学基金青年基金项目“基于液体透镜的快速高质量计算全息三维显示技术”(61805130),2019~2021(项目负责人)

[5] 中国博士后科学基金站中特别资助项目“高分辨率动态全息近眼3D显示技术”(2020T130039),2020~2021(项目负责人)

[6] 中国博士后科学基金面上项目“基于液体透镜的动态大视角计算全息三维显示技术”(2019M650422),2019~2020(项目负责人)

[7] 山西省应用基础研究计划项目基于大数据处理的全息三维视频实时获取与再现技术”(201801D221169),2018-2020(项目负责人)

科研成果

3D显示技术方面取得了重要成果:

[1] 在理论方面,提出了基于有效视区利用的全息显示衍射机理,在该机理指导下攻克了全息图快速生成技术,相较于常规技术,可将全息图计算速度提高2倍以上,实现了真实物体的全息再现;提出了消杂散光的高分辨率全息显示技术,信噪比达10dB以上,推进了全息在AR显示中的应用。

[2] 在系统方面,研制了宽视角大尺寸全息3D显示系统,相较于国外同类技术,该系统将视角提升至57.4度,尺寸扩大了4.2倍,解决了现有全息3D显示视角小的难题。相关研究成果得到金国藩院士、德国W. Osten教授(SPIE/OSA Fellow)等光学领域知名专家的认可和正面评价。

论文与专利

发表SCI收录论文70篇,其中第一作者/通讯作者33篇。Web of Science统计引用800余次,h指数11研究成果被ScienceNature PhotonicsNature Communications等顶级期刊引用。申请中国发明专利50余件,其中已授权40件且9件实现成果转化,申请国际发明专利5件。

代表论文

[1] Di Wang, Zhao-Song Li, Yi Zheng, You-Ran Zhao, Chao Liu, Jin-Bo Xu, Yi-Wei Zheng, Qian-Huang, Chen-Liang Chang, Da-Wei Zhang, Song-Lin Zhuang, and Qiong-Hua Wang*, “Liquid lens based holographic camera for real 3D scene hologram acquisition using end-to-end physical model-driven network,” Light: Science & Applications, 13, 62, 2024.

[2] Di Wang, Yi-Long Li, Fan Chu, Nan-Nan Li, Zhao-Song Li, Sin-Doo Lee, Zhong-Quan Nie, Chao Liu, and Qiong-Hua Wang*, “Color liquid crystal grating based color holographic 3D display system with large viewing angle,” Light: Science & Applications, 13, 16, 2024.

[3] Yi-Long Li, Nan-Nan Li, Di Wang*, Fan Chu, Sin-Doo Lee, Yi-Wei Zheng and Qiong-Hua Wang*, “Tunable liquid crystal grating based holographic 3D display system with wide viewing angle and large size,” Light: Science & Applications, 11, 188, 2022.  

[4] Di Wang, Zhao-Song Li, Yi-Wei Zheng, Nan-Nan Li, Yi-Long Li, and Qiong-Hua Wang*, “High-quality holographic 3D display system based on virtual splicing of spatial light modulator,” ACS Photonics, 10(7), 2297-2307, 2023.

[5] Di Wang, Nan-Nan Li, Yi-Long Li, Yi-Wei Zheng, Zhong-Quan Nie, Zhao-Song Li, Fan Chu*, and Qiong-Hua Wang*, “Large viewing angle holographic 3D display system based on maximum diffraction modulation,” Light: Advanced Manufacturing, 4, 18, 2023.

[6] Di Wang, Nan-Nan Li, Zhao-Song Li, Chun Chen, Byoungho Lee and Qiong-Hua Wang*, “Color curved hologram calculation method based on angle multiplexing,” Optics Express, 30(2), 3157-3171, 2022.

[7] Di Wang, Nan-Nan Li, Yi-Long Li, Yi-Wei Zheng, and Qiong-Hua Wang*, “Curved hologram generation method for speckle noise suppression based on stochastic gradient descent algorithm,” Optics Express, 29(26), 42650-42662, 2021.

[8] Di Wang, Jin-Bo Xu, Rong-Ying Yuan, You-Ran Zhao, Chao Liu, and Qiong-Hua Wang*, “High stability liquid lens with optical path modulation function,” Optics Express, 29(17), 27104-27117, 2021.

[9] Di Wang, Chao Liu, Chuan Shen, Yan Xing, and Qiong-Hua Wang*, “Holographic capture and projection system of real object based on tunable zoom lens,” PhotoniX, 1(1), 6, 2020.

[10] Di Wang, Nan-Nan Li, Chao Liu, and Qiong-Hua Wang*, “Holographic display method to suppress speckle noise based on effective utilization of two spatial light modulators,” Optics Express, 27(8), 11617-11625, 2019.

其他论文:

[11] Di Wang, Yi-Wei Zheng, Nan-Nan Li, and Qiong-Hua Wang*, “Holographic display system to suppress speckle noise based on beam shaping,” Photonics, 8(6), 204, 2021.

[12] Di Wang, Chao Liu, Shu-Feng Lin, and Qiong-Hua Wang*, “Holographic display technology based on liquid crystal device,” Journal of the Society for Information Display, 28(2), 136-147, 2020.

[13] Di Wang, Chao Liu, and Qiong-Hua Wang*, “Adjustable optical slit based on the phase type spatial light modulator,” IEEE Photonics Journal, 11(2), 7000408, 2019.

[14] Di Wang, Dan Xiao, Su-Juan Liu, Chao Liu, and Qiong-Hua Wang*, “Color holographic display system based on utilization of effective viewing area,” Journal of the Society for Information Display, 27(10), 646-653, 2019.

[15] Di Wang, Dan Xiao, Nan-Nan Li, Chao Liu, and Qiong-Hua Wang*, “Holographic display system based on effective area expansion of SLM,” IEEE Photonics Journal, 11(6), 7001312, 2019.

[16] Di Wang, Chao Liu, Fan Chu, and Qiong-Hua Wang*, “Full color holographic display system based on intensity matching of reconstructed image,” Optics Express, 27(12), 16599-16612, 2019.

[17] Di Wang, Chao Liu, and Qiong-Hua Wang*, “Holographic zoom micro-projection system based on three spatial light modulators,” Optics Express, 27(6), 8048-8058, 2019.

[18] Di Wang, Chao Liu, and Qiong-Hua Wang*, “Method of chromatic aberration elimination in holographic display based on zoomable liquid lens,”Optics Express, 27(7), 10058-10066, 2019.

[19] Di Wang, Chao Liu, Lei Li, Xin Zhou, and Qiong-Hua Wang*, “Adjustable liquid aperture to eliminate undesirable light in holographic projection,” Optics Express, 24(3), 2098-2105, 2016.

[20] Di Wang, De-Hong Wang, Chuan Shen, Chao Liu, and Qiong-Hua Wang*, “Adjustable aperture based on the phase modulation of spatial light modulator,” IEEE Journal of Display Technology, 12(5), 447-450, 2016.

[21] Di Wang, Chao Liu, Chuan Shen, Xin Zhou, and Qiong-Hua Wang*, “A holographic zoom system without undesirable light,” Optik, 127(19), 7782-7787, 2016.

[22] Di Wang, Qiong-Hua Wang*, Chuan Shen, Xin Zhou, and Chao Liu, “Color holographic zoom system based on a liquid lens,” Chinese Optics Letters, 13(7), 072301, 2015.

[23] Di Wang, Qiong-Hua Wang*, Xin Zhou, and Cui Wang, “Holographic projection method to realize adjusting location of reconstruction,” Optik, 126(24), 5372-5375, 2015.

[24] Di Wang, Qiong-Hua Wang*, Jun Wang, Xin Zhou and Da-Hai Li, “Color holographic display method based on a single-spatial light modulator”, Optical Engineering , 53(4), 045104. 2014.

[25] Di Wang, Qiong-Hua Wang*, Chuan Shen, Xin Zhou and Chun-Mei Liu, “Active optical zoom system”, Applied Optics, 53(31), 7402-7406, 2014.

[26] Di Wang, Chao Liu, Qiong-Hua Wang*, and Xin Zhou, “Voltage controlled optical filter based on electrowetting,” Chinese Optics Letters, 12(12), 121102, 2014.

[27] Nan-Nan Li, Chun Chen, Byoungho Lee, Di Wang*, and Qiong-Hua Wang*, Speckle noise suppression algorithm of holographic display based on spatial light modulator (Invited), Frontiers in Photonics, 2, 825610, 2022.

[28] Su-Juan Liu, Ning-Tao Ma, Ping-Ping Li, and Di Wang*, “Holographic near-eye 3D display method based on large-size hologram,” Frontiers in Materials, 8, 739449, 2021.

[29] Su-Juan Liu, Ning-Tao Ma, Feng-Xiao Zhai, Nan-Nan Liu, Ping-Ping Li, Yun-Qi Hao, and Di Wang*, “Large field-of-view holographic display method with speckle noise suppression based on time multiplexing,” Journal of the Society for Information Display, 29(10), 758-767, 2021.

[30] Su-Juan Liu, Di Wang*, Feng-Xiao Zhai, Nan-Nan Liu, and Qi-Yun Hao, “Holographic display method with a large field of view based on holographic functional screen,” Applied Optics, 59(20), 5983-5988, 2020.

[31] Chen-Liang Chang, Di Wang, Dong-Chen Zhu, Jia-Mao Li*, Jun Xia, and Xiao-Lin Zhang, “Deep learning based computer-generated hologram from a stereo image pair,” Optics Letters, 47(6), 1482-1485, 2022.

[32] Yi Zheng, Di Wang, Zhao Jiang, Chao Liu, and Qiong-Hua Wang*, “Continuous zoom compound eye imaging system based on liquid lenses,” Optics Express, 29(23), 37565-37579, 2021.

[33] Zhao Jiang, Di Wang, Yi Zheng, Chao Liu, and Qiong-Hua Wang*, “Continuous optical zoom microscopy imaging system based on liquid lenses,” Optics Express, 29(13), 20322-20335, 2021.

[34] Chen Chun, Byounghyo Lee, Nan-Nan Li, Minseok Chae, Di Wang, Qiong-Hua Wang, and Byoungho Lee*, “Multi-depth hologram generation using stochastic gradient descent algorithm with complex loss function,” Optics Express, 29(10), 15089-15103, 2021.

[35] Shu-Feng Lin, Philippe Gentet, Di Wang, Seung-Hyun Lee, Eun-Soo Kim, and Qiong-Hua Wang*, “Simply structured full-color holographic three-dimensional display using angular-compensating holographic optical element,” Optics and Lasers in Engineering, 138, 106404, 2021.

[36] Yi-Long Li, Di Wang, Nan-Nan Li, and Qiong-Hua Wang*, “Fast hologram generation method based on the optimal segmentation of a sub-CGH,” Optics Express, 28(21), 32185-32198, 2020.

[37] Nan-Nan Li, Di Wang, Yi-Long Li, and Qiong-Hua Wang*, “Method of curved composite hologram generation with suppressed speckle noise,” Optics Express, 28(23), 34378-34389, 2020.

[38] Chao Liu, Di Wang, Guang-Xu Wang, Zhao Jiang, and Qiong-Hua Wang*, “1550 nm infrared/visible light switchable liquid optical switch,” Optics Express, 28(6), 8974-8984, 2020.

[39] Chao Liu, Di Wang, Qiong-Hua Wang*, and Yan Xing, “Multifunctional optofluidic lens with beam steering,” Optics Express, 28(5), 7734-7745, 2020.

[40] Chao Liu, Di Wang, and Qiong-Hua Wang*, “A multidirectional beam steering refector actuated by hydraulic control,” Scientific Reports, 9, 5086, 2019.

[41] Chao Liu, Di Wang, Qiong-Hua Wang*, and Jiancheng Fang, “Electrowetting-actuated multifunctional optofluidic lens to improve the quality of computer-generated holography,” Optics Express, 27(9), 12963-12975, (2019).

[42] Chao Liu, Di Wang, and Qiong-Hua Wang*, “Variable aperture with graded attenuation combined with adjustable focal length lens,” Optics Express, 27(10), 14075-14084, 2019.

[43] Chao Liu, Di Wang, and Qiong-Hua Wang*, “Holographic display system with adjustable viewing angle based on multi-focus optofluidic lens,” Optics Express, 27(13), 18210-18221, 2019.

[44] Chao Liu, Di Wang, Lei Li, and Qiong-Hua Wang*, “Multifunction reflector controlled by liquid piston for optical switch and beam steering,” Optics Express, 27(23), 33233-33242, 2019.

[45] Shu-Feng Lin, Di Wang, Qiong-Hua Wang* and Eun-Soo Kim, “Full-color holographic 3D display system using off-axis color-multiplexed-hologram on single SLM,” Optics and Lasers in Engineering, 126, 105895, 2020.

[46] Lei Li, Di Wang, Chao Liu, and Qiong-Hua Wang*, “Ultrathin zoom telescopic objective,” Optics Express, 24(16), 18674-18684, 2016.

[47] Lei Li, Di Wang, Chao Liu, and Qiong-Hua Wang*, “Zoom microscope objective using electrowetting lenses,” Optics Express, 24(3), 2931-2940, 2016.

授权发明专利

[1] Di Wang, Qiong-Hua Wang, Chao Liu, Chu Fan, and Yi-Long Li, Tunable crystal grating-based holographic true 3D display system and method, U.S. Patent No.11,860,385

[2] 王琼华,王迪,刘超,一种基于空间光调制器的光切换系统,授权号:ZL201510008864.2

[3] 王琼华,王迪,王德宏,李松杰,一种基于可调光阑的全息投影系统,授权号:ZL201510710428.X

[4] 王琼华,王迪,王德宏,甘凤娇,一种消不良光的全息变焦系统,授权号:ZL201510180501.7

[5] 王琼华,王迪,王德宏,刘素娟,一种基于空间光调制器的可调光阑,授权号:ZL201510638412.2

[6] 王琼华,王德宏王迪,一种基于可变焦透镜的彩色计算全息色差补偿系统及方法,授权号:201410585494.4

[7] 王琼华,刘超,王迪一种基于电湿润效应的全反射液体光开关,授权号:201510016631.7

[8] 王琼华,魏溶,王迪,一种基于可编程正交密接柱透镜的光学变焦系统及变焦方法,授权号:ZL201510712268.2

[9] 王琼华,魏溶,王迪,刘素娟,一种基于数字柱透镜的全息投影系统,授权号:ZL201510648078.9

[10] 王琼华,刘素娟,王迪,一种减少再现浪费信息的计算全息图生成方法,授权号:ZL201610400842.5

[11] 王琼华,李松杰,刘素娟,王迪,一种基于哈希函数的计算全息加密方法,授权号:ZL201610758363.0

[12] 王琼华,肖聃,王迪,一种基于LCoS的光切换器,授权号:ZL201611244833.8

[13] 王琼华,肖聃,王迪,一种基于数字透镜的彩色计算全息杂光消除系统及方法,授权号:201710301725.8    

[14] 王迪,刘超,一种基于光衰减原理的彩色全息显示系统,授权号:ZL201711115313.1

[15] 王迪,刘超,一种基于液体器件的全息变焦系统,授权号:ZL201710890526.5

[16] 王迪,刘超,一种基于液体透镜的彩色全息变焦系统,授权号:ZL201710890543.9

[17] 王迪,王琼华,刘超,一种基于视区特性提高彩色计算全息再现像质量的方法,授权号:ZL201910246150.3

[18] 王琼华,王迪,刘超,一种基于有效利用空间光调制器的全息散斑噪声抑制方法,授权号:ZL201910246161.1

[19] 王琼华,王迪,刘超,一种光强可调的高质量全息显示系统,授权号:ZL201910246157.5  

[20] 王迪,王琼华,刘超,一种强度匹配的高质量全彩色全息显示系统,授权号:ZL201910246140.X

[21] 王琼华,王迪,刘超,一种基于光束整形抑制散斑噪声的全息显示系统,授权号:ZL201910299696.5     

[22] 王迪,王琼华,刘超,肖聃,一种基于高光焦度液体透镜的大视角全息显示系统,授权号:ZL201910374243.4

[23] 王迪,王琼华,刘超,肖聃,李楠楠,一种基于两个空间光调制器有效利用的大尺寸全息显示方法,授权号:ZL201910374246.8

[24] 王迪,王琼华,刘超,肖聃,张罗致,一种基于空间光调制器有效区域扩展的大视角全息显示系统,授权号:ZL201910374242.X  

[25] 王迪,王琼华,刘超,李楠楠,李移隆,一种基于分层像素扫描算法的全息散斑噪声抑制方法,授权号:ZL202010149335.5

[26] 王迪,王琼华,李移隆,李楠楠,刘超,一种基于全息图优化分割计算的快速全息图计算方法,专利号:ZL202010288882.1

[27] 王琼华,刘超,王迪,一种基于电润湿透镜的液体折射率测量仪,授权号:ZL201910246163.0

[28] 王琼华,刘超,王迪,王光旭,江钊,一种可实现光开关和光束导航的多功能反射镜,授权号:ZL201910923431.8

[29] 王琼华,李楠楠,王迪,李移隆,一种基于数字轴锥镜的全息轴向色差补偿方法,专利号:ZL201911050077.9

[30] 刘超,王琼华,王迪,一种自适应变倍望远镜,授权号:ZL201910956274.0

[31] 刘超,王琼华,王迪,一种基于自适应变焦相机的全息实时获取与投影系统,授权号:ZL201911375160.3

[32] 刘超,王琼华,王迪,王光旭,江钊,一种可见光和红外光自适应切换的液体光开关,授权号:ZL202010142298.5

[33] 王琼华,李楠楠,王迪,李移隆,一种低散斑噪声的彩色全息显示系统,授权号:ZL202010410454.1

[34] 王琼华,王迪,郑义微,李赵松,一种基于纯相位复合曲面全息图的全息显示系统,授权号:ZL202011110949.9

[35] 王迪,王琼华,刘超,储繁,李移隆,一种基于可调液晶光栅的全息真3D显示系统及方法,授权号:ZL202011479541.9

[36] 王迪,王琼华,李赵松,李楠楠,李移隆,刘超,一种基于空间光调制器虚拟阵列拼接的全息3D显示系统,授权号:ZL202110812111.2

[37] 王迪,王琼华,郑义微,何岷阳,马晓莉,一种基于随机梯度下降算法的曲面全息噪声抑制方法,授权号:ZL202111018439.3

[38] 王迪,庞应飞,王琼华,一种基于衍射模糊成像原理的无串扰全息3D显示方法,授权号:ZL20211093000.1

[39] 张罗致,王琼华,周昕,余展,王迪,一种非级联光学扫描全息的多图像并行加密方法,授权号:ZL202110777222.4

[40] 王琼华,刘超,徐近博,江钊,王迪,一种高稳定和光程可调的电润湿液体透镜,授权号:202110170943.9

[41] 刘超,王琼华,江钊,郑奕,王迪,一种体视角可调的连续变焦体视显微镜,授权号:ZL202110456676.1

[42] 王琼华,郑义微,王迪,李赵松,一种基于液晶锥透镜的大视角全息近眼显示方法,授权号:ZL202210882538.4

[43] 王迪,王琼华,李楠楠,郑义微,李赵松,一种基于高频相位因子的偏振全息图计算方法,授权号:ZL202111291081.1

申请国际发明专利

[44] Di Wang, Qiong-Hua Wang, Chao Liu, Chu Fan, and Yi-Long Li, Holographic true 3D display system and method based on adjustable liquid crystal grating, 国际申请号:PCT/CN2021/070320

[45] Di Wang, Qiong-Hua Wang, Zhao-Song Li, Nan-Nan Li, Yi-Long Li, and Chao Liu, Holographic 3D display system based on virtual array splicing of spatial light modulator, 国际申请号:PCT/CN2021/111015

[46]  Di Wang, Ying-Fei Pang, Qiong-Hua Wang, Li-Jun Xu, Nan-Nan Li, and Zhao-Song Li, Crosstalk-free holographic 3D display method based on the principle of diffraction blur imaging, 国际申请号:PCT/CN2021/115786

[47] Di Wang, Qiong-Hua Wang, Nan-Nan Li, Yi-Wei Zheng, and Zhao-Song Li, Calculation method of polarization hologram based on high-frequency phase factor, 国际申请号:PCT/CN2021/132856

申请中国发明专利

[48] 刘超,王琼华,郑奕,江钊,王迪,一种基于液体变焦相机的智能门禁识别系统,申请号:202011517366.8

[49] 王迪,王琼华,李赵松,黄倩,侯页好,一种基于物理模型驱动网络的全息图计算方法,申请号:202211556319.3

[50] 王琼华,王迪,储繁,侯页好,黄倩,一种大视角全息3D显示方法,申请号:202211556737.2

[51] 王迪,王琼华,李赵松,黄倩,侯页好,一种基于物理模型驱动网络的全息图计算方法,申请号:202211556319.3

[52] 王琼华,王迪,储繁,侯页好,黄倩,一种大视角全息3D显示方法,申请号:202211556737.2

[53] 王迪,王琼华,储繁,李移隆,李楠楠,一种基于液晶光栅的大视角彩色全息3D显示系统,申请号:202310023225.8

[54] 王琼华,黄倩,侯页好,王迪,郑义微,一种基于共形衍射原理的彩色球面全息显示系统,申请号:202311064468.2

[55] 王琼华,黄倩,王迪,侯页好,林凡川,一种基于高频信息提取的快速全息图生成方法,申请号:2023114870945

[56] 王琼华,王迪,李移隆,黄倩,一种大深度超表面偏振全息3D显示方法,申请号:202311561884.3

[57] 王琼华,王迪,李赵松,郑奕,赵悠然,一种基于物理模型驱动网络和液体透镜的全息相机,申请号:202311728574.6

[58] 王迪,王琼华,胡毅枭,赵芮宜,黄倩,一种基于分数阶傅立叶变换算法的低噪声全息图生成方法,申请号:202410171212X

 

关闭窗口
 
 
 
 
 网站地图 | 返回首页 | 联系我们 

北航仪器科学与光电工程学院显示与成像研究室  地址:北京市海淀区学院路37号